An investigation on heat transfer to the implant-bone interface due to abutment preparation with high-speed cutting instruments.

نویسندگان

  • M Gross
  • B Z Laufer
  • Z Ormianar
چکیده

Excessive heat generation at the implant-bone interface may cause irreversible bone damage and loss of osseointegration. The effect of heat generation in vitro at the implant surface caused by abutment reduction with medium- and extra-fine-grain diamond and tungsten burs in a high-speed dental turbine was examined. Titanium-alloy abutments connected to a titanium-alloy cylindrical implant embedded in an acrylic-resin mandible in a 37 degrees C water bath were reduced horizontally and vertically. Temperature changes were recorded via embedded thermocouples at the cervix and apex of the implant surface. Analysis of variance for repeated measures was used to compare seven treatment groups. Thirty seconds of continuous cutting with standard turbine coolant caused a mean temperature increase of 1 degrees C with a maximum of 2 degrees C. Similar tungsten cutting caused a mean increase of 2 degrees C with a maximum of 4.7 degrees C, significantly higher than diamond reduction. Additional air-water spray for continuous tungsten cutting had no significant effect, while intermittent cutting for 15-second increments reduced the temperature increase by 75%. Thus, abutment reduction with medium-grit diamonds using intermittent pressure and normal turbine coolant is unlikely to cause an interface-temperature increase sufficient to cause irreversible bone damage and compromise osseointegration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the Effect of Zirconia and Titanium Abutments on Microleakage of Implant-Abutment Interface Under Oblique Cyclic Loading In Vitro

Background and Aim: Oral bacteria can proliferate in the implant-abutment interface (IAI) and cause inflammation in the peri-implant tissues and adjacent bone. This study aimed to assess the effect of zirconia and titanium abutments on the microleakage of the IAI under oblique cyclic loading conditions. Materials and Methods: In this in-vitro study, 12 implant-abutment assemblies with zirconia...

متن کامل

Comparative Evaluation of Microleakage at the Interface of Titanium and Zirconium Abutments Following Oblique Cyclic Loading: An in vitro Study

Abstract Background and aim: Oral microbiota could proliferate the microspace between the implant and abutment, thereby cause inflammation in the peri-implant tissues and adjacent bone. This study aimed to investigate the effect of two types of abutments (zirconia and titanium) on microleakage at implant-abutment interface area under oblique cyclic loading in vitro. Materials and methods:In thi...

متن کامل

Comparative Evaluation of Microgap at the Interface of Titanium and Zirconium Abutments Following Oblique Cyclic Loading: An in vitro Study

Abstract   Background and Aim : Microgap in the implant-abutment interface is one of the main challenges in the treatment of two-piece implants. This study aimed to investigate the effect of two types of abutments (zirconia and titanium) on microgap at implant-abutment interface area under oblique cyclic loading in vitro. Methods and Materials In this in vitro study, 12 implant-abutment assemb...

متن کامل

Evaluation of Heat Transfer to the Implant-Bone Interface During Removal of Metal Copings Cemented onto Titanium Abutments.

PURPOSE The aim of this investigation was to measure the temperature increase due to heat transferred to the implant-bone interface when the abutment screw channel is accessed or a metal-ceramic crown is sectioned buccally with diamond or tungsten carbide bur using an air rotor, with or without irrigation. MATERIALS AND METHODS Cobalt-chromium copings were cemented onto straight titanium abut...

متن کامل

Effect of Abutment Angulation and Material on Stress and Strain Distributions in Premaxillary Bone: A Three-Dimensional Finite Element Analysis

Background and Aim: Dental implants with angled abutments are often inserted in the anterior maxillary region due to the status of the residual ridge and aesthetic considerations. The purpose of this study was to assess stress and strain distributions in the premaxillary bone around dental implants by means of finite element analysis (FEA). Materials and Methods: Four three-dimensional (3D) fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The International journal of oral & maxillofacial implants

دوره 10 2  شماره 

صفحات  -

تاریخ انتشار 1995